Theorem Details
import Mathlib.Data.Nat.GCD.Basic
-- Prove that gcd(a, b) = gcd(b, a % b)
theorem gcd_eq_gcd_mod (a b : ℕ) (h : b ≠ 0) : Nat.gcd a b = Nat.gcd b (a % b) := by sorry
Bounty: 0.02 ETH
Status: Closed
Proof
import Mathlib.Data.Nat.GCD.Basic
-- Prove that gcd(a, b) = gcd(b, a % b)
theorem gcd_eq_gcd_mod (a b : ℕ) (h : b ≠ 0) : Nat.gcd a b = Nat.gcd b (a % b) := by {
symm
rw [Nat.gcd_eq_iff]
split_ands
exact Nat.gcd_dvd_right a b
{
rw [Nat.dvd_mod_iff]
exact Nat.gcd_dvd_left a b
exact Nat.gcd_dvd_right a b
}
intro c h1 h2
rw [Nat.dvd_mod_iff h1] at h2
exact Nat.dvd_gcd h2 h1
}